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Abstract 
The Global Unified Parallel File System (GUPFS) project is a five -year project to 
provide a scalable, high -performance, high-bandwidth, shared file system for the 
National Energy Research Scientific Computing Center (NERSC). This paper presents 
the GUPFS testbed configuration, our benchmarking methodology, and some preliminary 
results. 
 

1 Introduction 
The Global Unified Parallel File System (GUPFS) project is a multiple-phase, five year 
project to provide a scalable, high-performance, high-bandwidth, shared file system for 
the National Energy Research Scientific Computing Center (NERSC) [1]. The primary 
purpose of the GUPFS project is to make it easier to conduct advanced scientific research 
using the NERSC systems. This is to be accomplished through the use of a shared file 
system providing a unified file namespace, operating on consolidated shared storage that 
is directly accessed by all the NERSC production computational and support systems. 
 
In order to successfully deploy a scalable high-performance shared file system with 
consolidated disk storage, three major emerging technologies must be brought together: 
shared/cluster file systems, cost-effective, high performance Storage Area Networks 
(SAN) fabrics, and high performa nce storage devices. Although they are evolving 
rapidly, these emerging technologies are not targeted towards the needs of high 
performance scientific computing. The GUPFS project is intended to evaluate these 
emerging technologies to determine the best solutions for a center-wide shared file 
system, and to encourage the development of these technologies in directions needed for 
HPC at NERSC. 
 
The GUPFS project is expected to span five years. During the first three years of the 
project, NERSC intends to test, evaluate, and steer the development of the technologies 
necessary for the successful deployment of a center-wide shared file system. Provided 
that an assessment of the technologies is favorable at the end of the first three years, the 
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last two years of the GUPFS project will focus on a staged deployment, leading to full 
production at the beginning of FY2006. 
 
To this end, during the past year the GUPFS project focused on identifying, testing, and 
evaluating existing and emerging shared and cluster file system, SAN fabric, and storage 
technologies. During this time, the GUPFS project was also active in identifying NERSC 
user I/O requirements, methods, and mechanisms, and developing appropriate 
benchmarking methodologies and benchmark codes for a parallel environment. 
 
This paper presents the GUPFS testbed configuration, our benchmarking methodology, 
and some preliminary results. 
 

2 GUPFS Testbed Configuration 
The GUPFS testbed was constructed from commodity components as a small-scale 
system mimicking a scientific parallel computational cluster. Its purpose was to assess 
the suitability of shared-disk cluster file systems with SAN attached storage to the 
scientific computational cluster environment.  
 
This testbed system presented a microcosm of a parallel scientific cluster—dedicated 
computational nodes, special-function service nodes, and a high-speed interconnect for 
message passing. It consisted of five computational nodes and one 
management/interactive node, and utilized an internal jumbo frame Gigabit Ethernet as 
the high-speed message passing interconnect. An internal 10/100 Mb/s Fast Ethernet 
LAN was used for system management and NFS distribution of the user home file 
systems. The configuration of the testbed is illustrated in following diagram. 
 

 
 
In designing a testbed for the GUPFS project, a number of factors were considered. The 
testbed was designed to support the evaluation of three technology areas:  
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� Shared/cluster file systems 
� SAN fabrics  
� Storage devices 

 
These three technology areas are key to the successful deployment of a center-wide 
shared file system utilizing consolidated storage resources.  
 
The testbed is configured as a Linux parallel scientific cluster, with a management node, 
a core set of 32 dedicated compute nodes and a set of six special-purpose nodes. Each 
compute node is a dual Pentium IV system with six PCI-X slots. The PCI-X slots allow 
us to test newer high performance interfaces such as 4x Infiniband HCA. All computer 
nodes are equipped with a 2Gb/s Fibre Channel HBA and a 1Gb/s Ethernet interface. 
Various sets of compute nodes are equipped with different groups of interfaces being 
evaluated such as Infiniband and Myrinet interfaces. 
 

3 GUPFS Benchmarking Approach 
File systems, and parallel file systems in particular, are extremely complicated and should 
be evaluated within the context of their intended use. In the commercial world, a file 
system may be evaluated by how it performs on a single application or a small number of 
critical applications. For example, a web serving content provider may not be interested 
in parallel write performance since the primary role of the file system is to provide read-
only access to data across a large number of servers without having to replicate the data 
to multiple farms. 
 
By contrast, the NERSC HPC environment must support a large number of user-written 
applications with varying I/O and metadata performance requirements. Further, 
applications running today may not resemble the applications that will be running two 
years from now. Given this diversity, the GUPFS project is taking a more general, multi-
pathed approach to the evaluation of parallel file systems. 
 
Initially, the GUPFS project has performed parallel I/O scalability and metadata 
performance studies. Later, testing includes reliability and stress-test studies, and finally 
the project will evaluate the performance with respect to specific I/O applications that 
emulate real NERSC user codes. 
 
3.1 Parallel I/O Performance Studies 
Evaluating the performance of a file system, and a parallel file system in particular, can 
only be done within the context of the underlying system and storage environment. If the 
underlying storage network or device can only perform at a rate of 30 MB/sec then we 
cannot expect sustained I/O performance through a file system to exceed this. In addition, 
for the case of a parallel file system, we need to understand the scalability of the 
underlying storage network before passing judgment on the file systems’ ability to scale 
to a large number of clients. To aid in this portion of the study, we have developed a 
parallel I/O benchmark named ‘MPTIO’ which can perform a variety of I/O operations 
on files or devices in a flexible manner. MPTIO is an MPI program in which each 
process spawns multiple threads to perform I/O on the underlying file or device. MPI is 
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used to synchronize the I/O activity and to collect the per-process results for reporting. It 
does not use the MPI-I/O library. When acting through a file system, MPTIO can have all 
threads perform I/O to a single global file, or all the threads of a process can perform I/O 
to a single file per-process, or all the threads can perform I/O to distinct per-thread files. 
In addition, I/O can be performed directly to a block device or Linux RAW device to help 
characterize the underlying storage devices and storage area network. Further, each 
thread can perform I/O on distinct, non-overlapping regions of the file or device, or 
multiple threads can perform overlapping I/O. The code can run five different I/O tests, 
including sequential read and write, random I/O and read-modify-write tests. Aggregate 
and per-process results are reported. For a complete description of this code, see the 
Benchmark Code Descriptions section in [2]. 
 
We can baseline the performance of the storage network and a device using raw device 
I/O as follows: 
 

� First we measure the I/O rates from a single node to or from the device, by 
varying the number of I/O threads to the point that the I/O rate saturates. 

� Second, we scale up the number of processes (each on a separate node) and also 
vary the number of I/O threads per process.  

� Third, if multiple paths exist through the network to the controller, we can use 
MPTIO to perform I/O through all paths.  

 
If the raw device I/O rates do not improve past a single node, then the performance 
bottleneck is in some portion of the network or on the storage device. If they do improve, 
the first test gives us a good estimation of the peak sustainable raw device I/O rate onto a 
single node. In this case, as the number of nodes increases, eventually the aggregate raw 
device I/O rate will again saturate. This bottleneck is either in the network or on the 
storage controller.  
 
Once a profile of the storage device and network using raw device I/O is complete, a file 
system can be built over the device. We can then perform I/O and scalability studies over 
the file system. Since most file systems cache data in host memory, large I/O requests 
have to be used to minimize the effects of caching. For example, if we observe better 
performance through the file system than to the RAW device, we can conclude it is the 
effect of data caching on the node. In addition, one can compare the performance 
difference between multiple processes writing to the same file versus each writing to 
different files. If the performance difference is substantial, it will likely be due to write-
lock contention between the processes. This might be alleviated if the file system 
supports byte-range locking so that each process can write its own section without 
obtaining the single (global) file lock. If the file system supports DIRECT I/O, then one 
can compare I/O performance through the file system with what was measured to the 
RAW device. The difference will indicate the amount of software and organizational 
overhead associated with the file system. For example, file block allocation will probably 
be distributed across the device resulting in multiple non-contiguous I/O requests to the 
device. Such I/O performance can degrade as the file system fills and block allocation is 
more fragmented. File system build options and mount options may also play a 
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substantial role in the performance. Additional tuning may need to be examined to see 
how they may affect the I/O performance. 
 
3.2 Metadata Performance Studies 
In a typical (lo cal) file system, the metadata is often heavily cached in the system 
memory and updated in an order such that, in the event of a system crash, the file system 
would be re -constructible from the on -disk image. Modern file systems maintain 
transaction logs, or journals, to keep track of which updates have been committed to 
stable storage and which have not. Each of the data structures generally contain one or 
more locks such that operating system actors wishing to modify the structure do so in an 
atomic manner, by first acquiring the lock, modifying the structure and then releasing the 
lock. Some file system operations require modifying many of the structures and thus the 
actors must acquire multiple locks to complete the operation. In a parallel file system 
multiple clients, running on different machines under different instances of an operating 
system will want to modify these data structures (to perform operations) in an 
unpredictable order. In these cases, where is the metadata is maintained and who controls 
it can have a dramatic effect on the performance of a file system operation.  
 
There are currently two main approaches to managing metadata in parallel file systems: 
symmetric (distributed) and asymmetric. In a purely symmetric file system, all the file 
system clients hold and share metadata. Clients wanting to perform an operation must 
request locks from the clients holding them via some from of distributed lock manager. In 
an asymmetric file system, a central (dedicated) metadata server maintains all the 
information. The clients request updates or read and write access to files. Clearly, this 
latter case is easier to manage but establishes a single point of failure and may create a 
performance bottleneck as the number of clients increases. Note that in both cases, once a 
client is granted read or write access to a file, it accesses the file data directly through the 
SAN. 
 
One aspect of evaluating a file system is how well it performs various metadata 
operations required for concurrent file operations by large number of clients in a parallel 
environment. Clearly, where and how the metadata is maintained will have a substantial 
impact on the performance of various file system operations. Clients have to send 
messages to other nodes in the cluster requesting locks, or asking for operations to be 
performed. The latency of the interconnection network and the software overhead of 
processing the communication stack will be a major portion of these costs. Apart from 
the issues of parallel file systems, a portion of the metadata performance will have to do 
with how the data structures are organized internally. For example, some file systems will 
maintain a directory structure as a linear linked list whereas others will use more 
sophisticated schemes, such as hash tables and balanced trees. Linear lists are easy to 
implement but access and update performance degrades rather seriously as the number of 
directory entries increase. The other schemes provide near-constant or log-time access 
and update rates and perform well as the directory grows. This, of course, is at the 
expense of a more complicated implementation. Another example is how the file system 
maintains information about which underlying blocks are free or in use. Some systems 
use a bitmap whereby the value of the bit indicates the availability of the block. Other 
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systems use extent-based schemes whereby a small record can represent the availability 
of a large region of contiguous blocks.  
 
In our study, we measured how the various parallel file systems perform with respect to 
certain metadata intensive operations. To this end, we have developed a file system 
metadata benchmark code called ‘METABENCH’. This is a parallel application that uses 
MPI to coordinate processes across multiple file system clients. The processes perform a 
series of metadata operations, such as file creation, file stating and file utime and append 
operations. Details on the current state of METABENCH can be found in the 
Benchmarking Code Descriptions section in [2].  
 
3.3 User Applications Emulation 
Although micro benchmarks such as MPTIO and METABENCH can provide a wealth of 
information about how a file system behaves under controlled conditions, the true test of 
a file system is how it performs in a real user environment. The NERSC user community 
is large, with a diverse collection of codes that evolve over time. In addition, the codes 
are complex and may not easily be ported to our test system, or even scale down to that 
size. Further, the I/O and file operation portion of the code may only consume a small 
portion of the run-time so attempting to run the actual application on the testbed would be 
inefficient. In order to address these issues, we plan to develop a small collection of I/O 
applications that emulate the I/O and file management behavior of real NERSC user 
applications. This will be a time-consuming task and will only be successful with the aid 
of the user community. We have begun an informal survey of some of the larger NERSC 
projects to understand their I/O requirements. As a part of this, we will select a few 
applications and solicit the users to help us create an I/O benchmark that emulates their 
code.  
 

4 Preliminary Performance Results 
During the past year, we have evaluated a number of products and technologies that we 
believe are key technologies to the GUPFS Project. We will present testing results in this 
section for some of the following products and technologies evaluated: 
 

� File Systems: Sistina 5.1 & 5.2 Beta; ADIC StorNext (CVFS) File System 2.0; 
Lustre 0.6 (1.0 Beta 1) and 1.0; and GPFS 1.3 for Linux 

� Fabric Technologies 
o Fibre Channel Switches: Brocade SilkWorm and Qlogic SANbox2-16 and 

SANbox2-64 
o ISCSI[3]: Cisco SN 5428, Intel iSCSI HBA, iSCSI over IB 
o Infiniband: InfiniCon and Topspin (IB to FC and GigE)  
o Inter-connect: Myrinnet, GigE 

� Fibre Channel Storage Devices  
o 1Gb/s FC: Dot Hill, Silicon Gear, Chaparral  
o 2Gb/s FC: Yotta Yotta NetStorager[8], EMC CX 600, 3PARdata 
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4.1 Storage Performance and Scalability 
Storage can be a performance bottleneck of any file system. A storage device may be able 
to sustain a very good single -port performance. However, having good single-port 
performance is not sufficient for a shared disk file system like GUPFS. For GUPFS, the 
underlying storage devices must demonstrate a very good scalability when the number of 
clients increases (to thousands or tens of thousands). A shared file system will not scale if 
the underlying storage does not scale. 
 

Storage Scalability (1 Thread, Disk Write) 
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Figure 1. Storage Scalability 

Figure 1 shows how storage devices scale when the number of clients increase. The 
figure shows the results of three storage devices: Yotta Yotta GSX 2400 (YY), Silicon 
Gear Mercury II (SG), and DotHill SANnet (DH). Both Silicon Gear and Dot Hill have 
only 2 1Gb/s front-end ports, while Yotta Yotta has 8 2Gb/s ports and 3PARdata has 16 
2Gb/s ports but only 8 were used during the test. On each storage device, we created a 
single LUN to be shared by multiple clients for shared access.  
 
The figure shows that both the Silicon Gear and Dot Hill devices did not scale when the 
number of clients increased. Silicon Gear performance actually dropped when the number 
of clients increased. On the other hand, the figure shows that the Yotta Yotta storage did 
scale very well when the number of clients increased.  
 

Storage Aggregate Performance (with 8 clients)
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Figure 2. Storage Aggregate Performance 

Figure 2 shows the aggregate performance of the three storage devices: DotHill, Silicon 
Gear, and Yotta Yotta, using the MPTIO benchmark with different test conditions. The 
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results indicate that the Yotta Yotta storage will be able to sustain higher performance 
than Silicon Gear or Dot Hill in a shared file system. 

 
4.2 Parallel File I/O Performance 
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Figure 3. Shared File System Performance 

During the last year, we have tested several file systems, including Sistina’s GFS [4], 
ADIC’s StorNext File System [5], and Lustre [7]. The above diagram shows the 8-client 
MPTIO results on these file system, under different test scenarios. These results indicate 
that there is not much difference in parallel I/O performance between GFS and ADIC’s 
StorNext File System, except for ‘Cache Read’. ADIC’s StorNext File System was 
probably doing direct I/O even when operating on files that can fit in the OS cache. 

With the award of the ASCI PathForward SGSFS [6] file system development contract to 
HP and Cluster File Systems, Inc., there has been rapid progress on the Lustre file system 
[7]. The earlier Lustre file system version (0.6) we tested failed to complete all but the 
‘Cache Write’ and ‘Cache Read’ tests. Luster1.0.0 was recently released and Figure 4 
shows the latest result of Lustre scalability with six clients and two Object Storage 
Servers (OSS).  
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Figure 4. Lustre Scalability 
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The figure seems to indicate that reads and writes were limited by the GigE interface as 
the test was running with two OSS’s and each OSS was equipped with one GigE 
interface. Additional test with more OSS’s and tuning should improve performance. 
 
4.3 Fabric Performance 
Storage area networks, by providing a high performance network fabric oriented toward 
storage device transfer protocols, allow direct physical data transfers between hosts and 
storage devices. Currently, most SANs are implemented using Fibre Channel (FC) 
protocol-based fabric. Emerging alternative SAN protocols, such as iSCSI (Internet Small 
Computer System Interface), FCIP (Fibre Channel over IP), and SRP (SCSI RDMA 
[Remote Direct Memory Access] Protocol) [9], are enabling the use of alternative fabric 
technologies, such as Gigabit Ethernet and the emerging InfiniBand, as SAN fabrics.  
 
Here we present some performance results of several fabric technologies: Fibre Channel 
(FC), iSCSI over GigE, iSCSI over IP over Infiniband (IPoIB), and SRP. 
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Figure 5. Storage Fabric Performance 

 
Figure 5 shows the results of single-thread reads of different I/O size using different 
fabric technologies. The best performance was achieved by the 2Gb/s FC interface, 
followed by the SRP protocol over Infiniband. Since the iSCSI traffic was passing 
through a single GigE interface, the iSCSI performance was less than 100 MB/s. With the 
additional stack overhead of IPoIB, iSCSI over IPoIB delivered the lowest performance 
for single-thread reads. 
 
Figure 6 shows the CPU overhead of different protocols for single-thread reads. FC, 
while delivered the best performance, used the least CPU overhead.  The iSCSI protocol 
allows the standard SCSI packets to be enveloped in IP packets and transported over 
standard Ethernet infrastructure, which allows SANs to be deployed on IP networks. This 
option is very attractive as it allows lower-cost SAN connectivity than can be achieved 
with Fibre Channel, although with lower performance. It will allow large numbers of 
inexpensive systems to be connected to the SAN and use the shared file system through 
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commodity-priced components. While attractive from a hardware cost perspective, this 
option does incur a performance impact on each host due to increased traffic through the 
host’s IP stack, as shown in Figure 6. 
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Figure 6. CPU Overhead of Storage Fabric 

5 Conclusions 
The GUPFS project started in the last half of FY 2001 as a limited investigation of the 
suitability of shared-disk file systems in a SAN environment for scientific clusters, with 
an eye towards possible future center-wide deployment. As such, it was targeted towards 
initial testing of the Sistina Global File System (GFS), and included a small testbed 
system to be used in the investigation. 
 
With the advent of the NERSC Strategic Proposal for FY 2002 –2006, this modest 
investigation evolved into the GUPFS project, which is one of the major programmatic 
thrusts at NERSC. During the first three years of the GUPFS project, NERSC intends to 
test, evaluate, and influence the development of the technologies necessary for the 
successful deployment of a center-wide shared file system. Provided that an assessment 
of the technologies is favorable at the end of the first three years, the last two years of the 
GUPFS project will focus on a staged deployment of a high performance shared file 
system center-wide at NERSC, in conjunction with the consolidation of user disk storage, 
leading to production in FY 2006. 
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