
101

GUPFS: The Global Unified Parallel File System Project at
NERSC*

Greg Butler, Rei Lee, and Mike Welcome

National Energy Research Scientific Computing Center
Lawrence Berkeley National Laboratory

Berkeley, California 94720
{GFButler, RCLee, MLWelcome}@lbl.gov

Tel: +1-510-486-4000

Abstract
The Global Unified Parallel File System (GUPFS) project is a five -year project to
provide a scalable, high -performance, high-bandwidth, shared file system for the
National Energy Research Scientific Computing Center (NERSC). This paper presents
the GUPFS testbed configuration, our benchmarking methodology, and some preliminary
results.

1 Introduction
The Global Unified Parallel File System (GUPFS) project is a multiple-phase, five year
project to provide a scalable, high-performance, high-bandwidth, shared file system for
the National Energy Research Scientific Computing Center (NERSC) [1]. The primary
purpose of the GUPFS project is to make it easier to conduct advanced scientific research
using the NERSC systems. This is to be accomplished through the use of a shared file
system providing a unified file namespace, operating on consolidated shared storage that
is directly accessed by all the NERSC production computational and support systems.

In order to successfully deploy a scalable high-performance shared file system with
consolidated disk storage, three major emerging technologies must be brought together:
shared/cluster file systems, cost-effective, high performance Storage Area Networks
(SAN) fabrics, and high performa nce storage devices. Although they are evolving
rapidly, these emerging technologies are not targeted towards the needs of high
performance scientific computing. The GUPFS project is intended to evaluate these
emerging technologies to determine the best solutions for a center-wide shared file
system, and to encourage the development of these technologies in directions needed for
HPC at NERSC.

The GUPFS project is expected to span five years. During the first three years of the
project, NERSC intends to test, evaluate, and steer the development of the technologies
necessary for the successful deployment of a center-wide shared file system. Provided
that an assessment of the technologies is favorable at the end of the first three years, the

* This work was supported by the Director, Office of Science, Office of Advanced Scientific Computer Research,
Mathematical, Information, and Computational Sciences Division, of the U.S. Department of Energy under Contract
No. DE-AC03-76SF00098.

102

last two years of the GUPFS project will focus on a staged deployment, leading to full
production at the beginning of FY2006.

To this end, during the past year the GUPFS project focused on identifying, testing, and
evaluating existing and emerging shared and cluster file system, SAN fabric, and storage
technologies. During this time, the GUPFS project was also active in identifying NERSC
user I/O requirements, methods, and mechanisms, and developing appropriate
benchmarking methodologies and benchmark codes for a parallel environment.

This paper presents the GUPFS testbed configuration, our benchmarking methodology,
and some preliminary results.

2 GUPFS Testbed Configuration
The GUPFS testbed was constructed from commodity components as a small-scale
system mimicking a scientific parallel computational cluster. Its purpose was to assess
the suitability of shared-disk cluster file systems with SAN attached storage to the
scientific computational cluster environment.

This testbed system presented a microcosm of a parallel scientific cluster—dedicated
computational nodes, special-function service nodes, and a high-speed interconnect for
message passing. It consisted of five computational nodes and one
management/interactive node, and utilized an internal jumbo frame Gigabit Ethernet as
the high-speed message passing interconnect. An internal 10/100 Mb/s Fast Ethernet
LAN was used for system management and NFS distribution of the user home file
systems. The configuration of the testbed is illustrated in following diagram.

In designing a testbed for the GUPFS project, a number of factors were considered. The
testbed was designed to support the evaluation of three technology areas:

103

� Shared/cluster file systems
� SAN fabrics
� Storage devices

These three technology areas are key to the successful deployment of a center-wide
shared file system utilizing consolidated storage resources.

The testbed is configured as a Linux parallel scientific cluster, with a management node,
a core set of 32 dedicated compute nodes and a set of six special-purpose nodes. Each
compute node is a dual Pentium IV system with six PCI-X slots. The PCI-X slots allow
us to test newer high performance interfaces such as 4x Infiniband HCA. All computer
nodes are equipped with a 2Gb/s Fibre Channel HBA and a 1Gb/s Ethernet interface.
Various sets of compute nodes are equipped with different groups of interfaces being
evaluated such as Infiniband and Myrinet interfaces.

3 GUPFS Benchmarking Approach
File systems, and parallel file systems in particular, are extremely complicated and should
be evaluated within the context of their intended use. In the commercial world, a file
system may be evaluated by how it performs on a single application or a small number of
critical applications. For example, a web serving content provider may not be interested
in parallel write performance since the primary role of the file system is to provide read-
only access to data across a large number of servers without having to replicate the data
to multiple farms.

By contrast, the NERSC HPC environment must support a large number of user-written
applications with varying I/O and metadata performance requirements. Further,
applications running today may not resemble the applications that will be running two
years from now. Given this diversity, the GUPFS project is taking a more general, multi-
pathed approach to the evaluation of parallel file systems.

Initially, the GUPFS project has performed parallel I/O scalability and metadata
performance studies. Later, testing includes reliability and stress-test studies, and finally
the project will evaluate the performance with respect to specific I/O applications that
emulate real NERSC user codes.

3.1 Parallel I/O Performance Studies
Evaluating the performance of a file system, and a parallel file system in particular, can
only be done within the context of the underlying system and storage environment. If the
underlying storage network or device can only perform at a rate of 30 MB/sec then we
cannot expect sustained I/O performance through a file system to exceed this. In addition,
for the case of a parallel file system, we need to understand the scalability of the
underlying storage network before passing judgment on the file systems’ ability to scale
to a large number of clients. To aid in this portion of the study, we have developed a
parallel I/O benchmark named ‘MPTIO’ which can perform a variety of I/O operations
on files or devices in a flexible manner. MPTIO is an MPI program in which each
process spawns multiple threads to perform I/O on the underlying file or device. MPI is

104

used to synchronize the I/O activity and to collect the per-process results for reporting. It
does not use the MPI-I/O library. When acting through a file system, MPTIO can have all
threads perform I/O to a single global file, or all the threads of a process can perform I/O
to a single file per-process, or all the threads can perform I/O to distinct per-thread files.
In addition, I/O can be performed directly to a block device or Linux RAW device to help
characterize the underlying storage devices and storage area network. Further, each
thread can perform I/O on distinct, non-overlapping regions of the file or device, or
multiple threads can perform overlapping I/O. The code can run five different I/O tests,
including sequential read and write, random I/O and read-modify-write tests. Aggregate
and per-process results are reported. For a complete description of this code, see the
Benchmark Code Descriptions section in [2].

We can baseline the performance of the storage network and a device using raw device
I/O as follows:

� First we measure the I/O rates from a single node to or from the device, by
varying the number of I/O threads to the point that the I/O rate saturates.

� Second, we scale up the number of processes (each on a separate node) and also
vary the number of I/O threads per process.

� Third, if multiple paths exist through the network to the controller, we can use
MPTIO to perform I/O through all paths.

If the raw device I/O rates do not improve past a single node, then the performance
bottleneck is in some portion of the network or on the storage device. If they do improve,
the first test gives us a good estimation of the peak sustainable raw device I/O rate onto a
single node. In this case, as the number of nodes increases, eventually the aggregate raw
device I/O rate will again saturate. This bottleneck is either in the network or on the
storage controller.

Once a profile of the storage device and network using raw device I/O is complete, a file
system can be built over the device. We can then perform I/O and scalability studies over
the file system. Since most file systems cache data in host memory, large I/O requests
have to be used to minimize the effects of caching. For example, if we observe better
performance through the file system than to the RAW device, we can conclude it is the
effect of data caching on the node. In addition, one can compare the performance
difference between multiple processes writing to the same file versus each writing to
different files. If the performance difference is substantial, it will likely be due to write-
lock contention between the processes. This might be alleviated if the file system
supports byte-range locking so that each process can write its own section without
obtaining the single (global) file lock. If the file system supports DIRECT I/O, then one
can compare I/O performance through the file system with what was measured to the
RAW device. The difference will indicate the amount of software and organizational
overhead associated with the file system. For example, file block allocation will probably
be distributed across the device resulting in multiple non-contiguous I/O requests to the
device. Such I/O performance can degrade as the file system fills and block allocation is
more fragmented. File system build options and mount options may also play a

105

substantial role in the performance. Additional tuning may need to be examined to see
how they may affect the I/O performance.

3.2 Metadata Performance Studies
In a typical (lo cal) file system, the metadata is often heavily cached in the system
memory and updated in an order such that, in the event of a system crash, the file system
would be re -constructible from the on -disk image. Modern file systems maintain
transaction logs, or journals, to keep track of which updates have been committed to
stable storage and which have not. Each of the data structures generally contain one or
more locks such that operating system actors wishing to modify the structure do so in an
atomic manner, by first acquiring the lock, modifying the structure and then releasing the
lock. Some file system operations require modifying many of the structures and thus the
actors must acquire multiple locks to complete the operation. In a parallel file system
multiple clients, running on different machines under different instances of an operating
system will want to modify these data structures (to perform operations) in an
unpredictable order. In these cases, where is the metadata is maintained and who controls
it can have a dramatic effect on the performance of a file system operation.

There are currently two main approaches to managing metadata in parallel file systems:
symmetric (distributed) and asymmetric. In a purely symmetric file system, all the file
system clients hold and share metadata. Clients wanting to perform an operation must
request locks from the clients holding them via some from of distributed lock manager. In
an asymmetric file system, a central (dedicated) metadata server maintains all the
information. The clients request updates or read and write access to files. Clearly, this
latter case is easier to manage but establishes a single point of failure and may create a
performance bottleneck as the number of clients increases. Note that in both cases, once a
client is granted read or write access to a file, it accesses the file data directly through the
SAN.

One aspect of evaluating a file system is how well it performs various metadata
operations required for concurrent file operations by large number of clients in a parallel
environment. Clearly, where and how the metadata is maintained will have a substantial
impact on the performance of various file system operations. Clients have to send
messages to other nodes in the cluster requesting locks, or asking for operations to be
performed. The latency of the interconnection network and the software overhead of
processing the communication stack will be a major portion of these costs. Apart from
the issues of parallel file systems, a portion of the metadata performance will have to do
with how the data structures are organized internally. For example, some file systems will
maintain a directory structure as a linear linked list whereas others will use more
sophisticated schemes, such as hash tables and balanced trees. Linear lists are easy to
implement but access and update performance degrades rather seriously as the number of
directory entries increase. The other schemes provide near-constant or log-time access
and update rates and perform well as the directory grows. This, of course, is at the
expense of a more complicated implementation. Another example is how the file system
maintains information about which underlying blocks are free or in use. Some systems
use a bitmap whereby the value of the bit indicates the availability of the block. Other

106

systems use extent-based schemes whereby a small record can represent the availability
of a large region of contiguous blocks.

In our study, we measured how the various parallel file systems perform with respect to
certain metadata intensive operations. To this end, we have developed a file system
metadata benchmark code called ‘METABENCH’. This is a parallel application that uses
MPI to coordinate processes across multiple file system clients. The processes perform a
series of metadata operations, such as file creation, file stating and file utime and append
operations. Details on the current state of METABENCH can be found in the
Benchmarking Code Descriptions section in [2].

3.3 User Applications Emulation
Although micro benchmarks such as MPTIO and METABENCH can provide a wealth of
information about how a file system behaves under controlled conditions, the true test of
a file system is how it performs in a real user environment. The NERSC user community
is large, with a diverse collection of codes that evolve over time. In addition, the codes
are complex and may not easily be ported to our test system, or even scale down to that
size. Further, the I/O and file operation portion of the code may only consume a small
portion of the run-time so attempting to run the actual application on the testbed would be
inefficient. In order to address these issues, we plan to develop a small collection of I/O
applications that emulate the I/O and file management behavior of real NERSC user
applications. This will be a time-consuming task and will only be successful with the aid
of the user community. We have begun an informal survey of some of the larger NERSC
projects to understand their I/O requirements. As a part of this, we will select a few
applications and solicit the users to help us create an I/O benchmark that emulates their
code.

4 Preliminary Performance Results
During the past year, we have evaluated a number of products and technologies that we
believe are key technologies to the GUPFS Project. We will present testing results in this
section for some of the following products and technologies evaluated:

� File Systems: Sistina 5.1 & 5.2 Beta; ADIC StorNext (CVFS) File System 2.0;
Lustre 0.6 (1.0 Beta 1) and 1.0; and GPFS 1.3 for Linux

� Fabric Technologies
o Fibre Channel Switches: Brocade SilkWorm and Qlogic SANbox2-16 and

SANbox2-64
o ISCSI[3]: Cisco SN 5428, Intel iSCSI HBA, iSCSI over IB
o Infiniband: InfiniCon and Topspin (IB to FC and GigE)
o Inter-connect: Myrinnet, GigE

� Fibre Channel Storage Devices
o 1Gb/s FC: Dot Hill, Silicon Gear, Chaparral
o 2Gb/s FC: Yotta Yotta NetStorager[8], EMC CX 600, 3PARdata

107

4.1 Storage Performance and Scalability
Storage can be a performance bottleneck of any file system. A storage device may be able
to sustain a very good single -port performance. However, having good single-port
performance is not sufficient for a shared disk file system like GUPFS. For GUPFS, the
underlying storage devices must demonstrate a very good scalability when the number of
clients increases (to thousands or tens of thousands). A shared file system will not scale if
the underlying storage does not scale.

Storage Scalability (1 Thread, Disk Write)

0.00

200.00

400.00

600.00

800.00

1 2 3 4 5 6 7 8

of Clients

M
B

/s
ec

Yotta Yotta Silicon Gear Dot Hill

Figure 1. Storage Scalability

Figure 1 shows how storage devices scale when the number of clients increase. The
figure shows the results of three storage devices: Yotta Yotta GSX 2400 (YY), Silicon
Gear Mercury II (SG), and DotHill SANnet (DH). Both Silicon Gear and Dot Hill have
only 2 1Gb/s front-end ports, while Yotta Yotta has 8 2Gb/s ports and 3PARdata has 16
2Gb/s ports but only 8 were used during the test. On each storage device, we created a
single LUN to be shared by multiple clients for shared access.

The figure shows that both the Silicon Gear and Dot Hill devices did not scale when the
number of clients increased. Silicon Gear performance actually dropped when the number
of clients increased. On the other hand, the figure shows that the Yotta Yotta storage did
scale very well when the number of clients increased.

Storage Aggregate Performance (with 8 clients)

0

400

800

1200

1600

Cache
Write

Cache
Read

Cache
Rotate
Read

Disk Write Disk Read Disk
Rotate
Read

T
hr

ou
gh

pu
t (

M
B

/s
)

Yotta Yotta Silicon Gear Dot Hill

Figure 2. Storage Aggregate Performance

Figure 2 shows the aggregate performance of the three storage devices: DotHill, Silicon
Gear, and Yotta Yotta, using the MPTIO benchmark with different test conditions. The

108

results indicate that the Yotta Yotta storage will be able to sustain higher performance
than Silicon Gear or Dot Hill in a shared file system.

4.2 Parallel File I/O Performance

File System Performance (MPTIO, DH)

1.00

10.00

100.00

1000.00

10000.00

Cache
Write

Cache
Read

Cache
Rotate
Read

Disk
Write

Disk
Read

Disk
Rotate
Read

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

GFS ADIC Lustre

Figure 3. Shared File System Performance

During the last year, we have tested several file systems, including Sistina’s GFS [4],
ADIC’s StorNext File System [5], and Lustre [7]. The above diagram shows the 8-client
MPTIO results on these file system, under different test scenarios. These results indicate
that there is not much difference in parallel I/O performance between GFS and ADIC’s
StorNext File System, except for ‘Cache Read’. ADIC’s StorNext File System was
probably doing direct I/O even when operating on files that can fit in the OS cache.

With the award of the ASCI PathForward SGSFS [6] file system development contract to
HP and Cluster File Systems, Inc., there has been rapid progress on the Lustre file system
[7]. The earlier Lustre file system version (0.6) we tested failed to complete all but the
‘Cache Write’ and ‘Cache Read’ tests. Luster1.0.0 was recently released and Figure 4
shows the latest result of Lustre scalability with six clients and two Object Storage
Servers (OSS).

Lustre Scalability (with 2 OSS's)

0

50

100

150

200

1 2 3 4 5 6
of Clients

M
B

/s
ec Read

Write

Figure 4. Lustre Scalability

109

The figure seems to indicate that reads and writes were limited by the GigE interface as
the test was running with two OSS’s and each OSS was equipped with one GigE
interface. Additional test with more OSS’s and tuning should improve performance.

4.3 Fabric Performance
Storage area networks, by providing a high performance network fabric oriented toward
storage device transfer protocols, allow direct physical data transfers between hosts and
storage devices. Currently, most SANs are implemented using Fibre Channel (FC)
protocol-based fabric. Emerging alternative SAN protocols, such as iSCSI (Internet Small
Computer System Interface), FCIP (Fibre Channel over IP), and SRP (SCSI RDMA
[Remote Direct Memory Access] Protocol) [9], are enabling the use of alternative fabric
technologies, such as Gigabit Ethernet and the emerging InfiniBand, as SAN fabrics.

Here we present some performance results of several fabric technologies: Fibre Channel
(FC), iSCSI over GigE, iSCSI over IP over Infiniband (IPoIB), and SRP.

Storage Fabric Performance (single Thread, Read)

0.00

40.00

80.00

120.00

160.00

200.00

16mb 4mb 1mb 256kb 64kb 16kb 4kb 1kb
Block Size

 M
B

/s
ec

fc_yy (2gb) srp_ib (2gb) iscsi_ge iscsi_ib

Figure 5. Storage Fabric Performance

Figure 5 shows the results of single-thread reads of different I/O size using different
fabric technologies. The best performance was achieved by the 2Gb/s FC interface,
followed by the SRP protocol over Infiniband. Since the iSCSI traffic was passing
through a single GigE interface, the iSCSI performance was less than 100 MB/s. With the
additional stack overhead of IPoIB, iSCSI over IPoIB delivered the lowest performance
for single-thread reads.

Figure 6 shows the CPU overhead of different protocols for single-thread reads. FC,
while delivered the best performance, used the least CPU overhead. The iSCSI protocol
allows the standard SCSI packets to be enveloped in IP packets and transported over
standard Ethernet infrastructure, which allows SANs to be deployed on IP networks. This
option is very attractive as it allows lower-cost SAN connectivity than can be achieved
with Fibre Channel, although with lower performance. It will allow large numbers of
inexpensive systems to be connected to the SAN and use the shared file system through

110

commodity-priced components. While attractive from a hardware cost perspective, this
option does incur a performance impact on each host due to increased traffic through the
host’s IP stack, as shown in Figure 6.

CPU Overhead of Storage Fabric

0.00

10.00

20.00

30.00

40.00

50.00

16mb 4mb 1mb 256kb 64kb 16kb 4kb 1kb

Block Size

%
sy

s

fc_yy (2gb) srp_ib (2gb) iscsi_ge iscsi_ib

Figure 6. CPU Overhead of Storage Fabric

5 Conclusions
The GUPFS project started in the last half of FY 2001 as a limited investigation of the
suitability of shared-disk file systems in a SAN environment for scientific clusters, with
an eye towards possible future center-wide deployment. As such, it was targeted towards
initial testing of the Sistina Global File System (GFS), and included a small testbed
system to be used in the investigation.

With the advent of the NERSC Strategic Proposal for FY 2002 –2006, this modest
investigation evolved into the GUPFS project, which is one of the major programmatic
thrusts at NERSC. During the first three years of the GUPFS project, NERSC intends to
test, evaluate, and influence the development of the technologies necessary for the
successful deployment of a center-wide shared file system. Provided that an assessment
of the technologies is favorable at the end of the first three years, the last two years of the
GUPFS project will focus on a staged deployment of a high performance shared file
system center-wide at NERSC, in conjunction with the consolidation of user disk storage,
leading to production in FY 2006.

Reference
[1] NERSC Strategic Proposal FY2002-FY2006,
http://www.nersc.gov/aboutnersc/pubs/Strategic_Proposal_final.pdf.
[2] The Global Unified Parallel File System (GUPFS) Project: FY 2002 Activities and
Results, http://www.nersc.gov/aboutnersc/pubs/GUPFS_02.pdf.
[3] Julian Satran, “iSCSI” (Internet Small Computer System Interface) IETF Standard,
January 24, 2003, http://www.ietf.org/internet-drafts/draft-ietf-ips-iscsi-20.pdf.

111

[4] Global File System (GFS), Sistina Software, Inc., http://www.sistina.com/downloads/
datasheets/GFS_datasheet.pdf.
[5] StorNext File System, Advanced Digital Information Corporation (ADIC), http://
www.adic.com/ibeCCtpSctDspRte.jsp?minisite=10000&respid=22372§ion=10121.
[6] ASCI Path Forward, SGSFS, 2001, http://www.lustre.org/docs/SGSRFP.pdf.
[7] “Lustre: A Scalable, High-Performance File System,” Cluster File Systems, Inc.,
November 2002, http://www.lustre.org/docs/whitepaper.pdf.
[8] Yotta Yotta NetStorager GSX 2400, Yotta Yotta, Inc.,
http://www.yottayotta.com/pages/products/overview.htm.
[9] SRP: SCSI RDMA Protocol: ftp://ftp.t10.org/t10/drafts/srp/srp-r16a.pdf.

