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Abstract

Large tertiary storage systems tend to be expensive, so performance models are
needed for sizing and for performance optimization. Several researchers (including
ourselves) have attempted to supply these models in recent years. In this paper we
report on our progress in the development of a previously published model. The im-
provements we have made include a more accurate model of the robot arm, experi-
mental validation of the model, and the integration of the model into PC analysis tools
through a Perl interface.

1 Introduction

In spite of rapidly declining on-line storage prices, many applications, such as scientific
archives, scientific databases, data warehouses, digital libraries, and multimedia servers
create and serve such large volumes of data that the use of tertiary storage is required.
Large tertiary storage systems tend to be expensive, and tend to have unusual performance
characteristics. Performance models are needed for sizing and performance optimization
studies.

The need for performance models has motivated considerable recent research. Johnson
[3, 4], and Menasce, Pentakalos, Yesha, and Halem [7, 8] have developed analytical perfor-
mance models of tertiary storage systems. Gibson and Miller [1] are developing a config-
urable mass storage simulator. The NASA Goddard Mass Storage Testing Laboratory [9]
is developing a benchmark suite to test and rate HSM solutions.

In [3, 4], we presented a detailed queuing model of a robotic storage library, incorporating
the interaction of robot arm, batch arrivals, and multiple file loads from a tape. Since then,
we have continued to work on improving the accuracy and usefulness of the model. In
particular,



� A weakness of previous tertiary storage models was the lack of detailed informa-
tion about the performance of model components. We have performed an extensive
performance characterization study of common tertiary storage components [6]. We
have used this information to make our analytical model more realistic.

� We have refined our model of the robot arm, increasing its range of accuracy.

� We have validated our model using experimental measurements of a Storagetek 9710
with four DLT 4000 drives.

� We have developed an interface between our model and common PC data analysis
tools, using widely available public domain software such as Perl.

In this paper, we report on the last three refinements (please refer to our paper [6] in these
proceedings for information regarding tape drive performance characterizations).

2 Robot Arm Modeling

In the model reported in [3, 4], we describe how the interaction between queuing for service
from the robot arm of robotic storage library and queueing for service from the tape drives
can be modeled with an iterative computation.

A job in our model represents a user's request for data. Our analysis of usage patterns [2, 5]
indicated that a typical request is for a batch of files, possibly distributed over multiple
media. In our model, a job splits into a batch of requests, where each request represents
the loading of data from a media. The time to serve a request is the sum of the media fetch
time, mount time, seek times, and file transfer times. Each request queues for service from
one of the media drives, and the job is finished when all of the requests in the batch are
finished. The media fetch time depends on the drive utilization, and vice versa, leading
to the iterative solution. The robot arm is modeled as aM=G=1 queue with an infinite
customer population and batch arrivals. While the actual customer population is finite, for
light loads the approximation is reasonably accurate.

In the process of performing an experimental validation, we found that the robot arm could
easily be made to have a high utilization. The infinite customer model overestimated queu-
ing delays at the robot arm, decreasing the accuracy of the model. To fix the problem,
we developed a finite customer population model. In this section, we briefly describe the
approach.

The software we use to manage the robotic storage library has a volume manager that does
not rewind tapes after use, nor does it return the tapes to the shelf. In addition, the volume
manager is single threaded, so only one tape can be changed at a time1. As a result, the

1If we disable the “fast load” setting on the Storagetek 9710, the robot does not return a ready status until
the drives are ready (in case the tape handling software cannot detect when the drive is ready). This setting
also results in very long robot service times.



time spent by a request in service by the volume manager can be represented by the robot
arm server. The service time of the volume manager includes rewinding the tape in the
selected drive, unmounting it, returning the old tape to the shelf, fetching the new tape, and
mounting it.

Let c be the number of tape drives in the robotic storage library. Ifb of the c drives are
busy, then the the maximum number of tape load requests pending service by the volume
manager isc � b. If there areq < b � c load requests pending service by the volume
manager, then a new load request must wait for the volume manager to finish the existing
q requests.

The model described in [3, 4] assumes that a user fetch request translates into multiple
media fetch requests As a result, media load requests also come in batches, but the batch
size cannot be larger than the number of idle drives,i = c � b � q. Let B be the random
variable representing the number of media loads generated by a user fetch request. Let
pj = Pr[B = j] be the distribution ofB. Then if i drives are idle, the size of the batch
arrival at the volume manager queue is the random variableBi with the distributionpi;j =
Pr[Bi = j] defined by

pi;j = pj j < i
P
1

k=i pk j = i

0 j > i

We can describe the state of the volume manager by specifying the number of busy, queued,
and idle drives. Sinceb + i + q = c andc is constant, we only need to specify two of the
three parameters to describe the state. It turns out to be easiest to specify the state of the
volume manager with(b; i). The volume manager can be in any state(b; i) such thatb � 0,
i � 0, andi+ b � c.

Next, we specify how the volume manager can change states. The transitions are given in
Table 1. In this table,Etr is the expected service time of the volume manager,Edr is the
expected service time of drive to fetch the requested data, andpqd is the probability that if
all drives are busy and a drive finishes service, there is pending fetch request for the drive
to service.

The states and the transition function of the volume manager model define a finite Markov
chain model, which we can solve for the steady state behavior. The model hasO(c2) states,
andc is small. The robot arm model can be extended to handle deterministic robot arm
service times [6] (by using an embedded Markov chain model) and separate media fetch
and return requests. We will detail these models in a full paper.



cause from to rate condition
robot completes service(b; i) (b+ 1; i) 1=Etr b < c� i
drive completes service(b; i) (b� 1; i+ 1) b=Edr i > 0, b > 0

no queued requests
drive completes service(b; i) (b� 1; i+ 1) (1� pqd)b=Edr i = 0, b > 0

no queued requests
drive completes service(b; i) (b� 1; i) pqdb=Edr i = 0, b > 0

queued requests
job arrival (b; i) (b; i� j) pi;j� j � i

Table 1: State transitions for the robot arm (volume manager).

3 Experimental validation study

We had access to a Storagetek 9710 with four DLT 4000 tape drives. As discussed in the
previous section, the volume manager of our tape management software is single threaded,
requiring a modification in the definition of the robot service time and the drive service
time. We measured the Storagetek 9710 and the DLT 4000 to obtain service time parame-
ters (please see [6] for details on the measurements).

We submitted synthetic jobs to the robotic storage library. A controller script generated
requests by waiting for an exponentially distributed length of time and then creating a batch
request. A batch request was generated by forking offk processes each of which requested
the load of a media, and the fetch of files from the media. The batch size is chosen by
sampling an exponentially distributed random variable, while the number of files fetched
from a tape has a uniform distribution. Because of the limited number of test tapes (40),
we limited the batch size to 15 media. The size of a file fetched from tape can be 1 Mbyte,
10 Mbytes, 50 Mbytes, 200 Mbytes, or 1 Gbyte with a 30%, 30%, 20%, 15%, and 5%
chance, respectively, representing a wide range of file sizes. We note that the wide range
of file sizes and the emphasis on small files makes obtaining an accurate model more of a
challenge.

We varied the arrival rate, the average number of media fetched, and the average number
of files fetched per media, and measured the batch waiting time and the batch service time
(i.e., by using thewaitpid system call). Each experiment was terminated after 50 jobs
completed. We assumed that seeks required an average of 75 seconds, the robotic service
time is 9 seconds, the mount time is 40 seconds, the rewind and unmount time is 100
seconds, and the transfer rate is 1.5 Mbytes/sec, based on our benchmark measurements
[6]. Table 2 lists the results.

The response time predictions are usually within 20% of the observed response time, and
in all cases is within 30%. In some cases the predicted response time is quire close to the
observed. This good agreement (and also the cases of poor prediction) is due to random
chance, as only one sample path was observed. However the general trend is that the model



avg. time avg. avg. number experimental analytical percent
between media per files per of response response difference
arrivals job media drives time time

1000 sec. 2 5 3 3438 sec. 3571 sec. 3.8%
750 2 3 4 1473 1695 15
1000 2 3 4 1283 1297 1.1
1000 4 3 4 2813 3273 16
1400 3 3 3 2755 2247 18
1000 2 3 3 1293 1340 3.6
1200 4 3 4 3432 2473 28

Table 2: Experimental and analytical predictions of job service times.

gives reasonably accurate predictions. We note that the device utilizations were high, with
a drive utilization ranging from 49% to 70%, and a robot arm (volume manager) utilization
ranging from 24% to 38%. Accurate response time predictions are difficult when device
utilizations are high.

Although we generated a synthetic workload that matches the modeled workload, the pro-
cessing of the workload was performed by the robotic storage library and its driving soft-
ware. Therefore we conclude that our model of the mechanics of the robotic storage library
are accurate.

4 Interfaces

We have ported the model solver to the Win 95 platform. The model solver is written in
ANSI C, so POSIX compliant C development environments (for example, DJGPP, which
is available for free) can compile the model and generate executable code.

The Perl scripting language is an excellent tool for driving an external program, parsing
the results, and generating reports. Perl is also available for the Win 95 platform for free.
Recent versions of Perl (e.g., Perl 5) support OLE calls. As a result it is easy to write a Perl
program that makes multiple calls to the model solver, collates the results, passes a table to
a spreadsheet package, and causes the spreadsheet to plot the results. We have developed
some sample scripts.

5 Conclusions

Understanding the performance of tertiary storage devices is a difficult task, but is neces-
sary for the planning and optimization of large data systems. In this paper, we present our
progress in developing an analytical model of a robotic storage library. By developing a



more accurate model of the robot arm and by taking measurements of a Storagetek 9710
with four DLT 4000 tape drives, we were able to accurately model the system. To simplify
the use of the model, we have developed interfaces to tools available on a PC platform.
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